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ABSTRACT 

The present status of supersymmetric inflationary models is 

reviewed. In particular, problems in finding a successful model in 

minimal N=l supergravity theories are resolved in more general 

non-minimal theories. 
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It is well known by now, that problems associated with initial 

conditions in the standard big bang model can be neatly resolved by an 

early period of exponential expansion OP inflation.‘) The inflationary 

epoch is triggered during a first order phase transition in which the 

Universe is trapped in a false vacuum state. In models of new 

inflation,21 the Universe begins its exponential expansion as a scalar 

field rolls into a potential well, thus picking up a vacuum expectation 

value resulting in symmetry breaking. Early attempts to find a model 

for new inflation associated the phase transition with SU(5) symmetry 

breaking. It had quickly become apparent, however that problems in 

these SU(5) inflationary models began to outnumber their benefits.3-5) 

It was noticed5.7) that if the scalar field responsible for 

inflation, the inflaton, were a gauge singlet, many of the difficulties 

could disappear. As we will see, models in which the inflaton picks up 

a very large vacuum expectation value <$>=v>>Mx (where M, is the GUT 

scale) allowed for a longer period of inflation, and at-e called 

primordial inflation.7) As we will also see, super-symmetry removes other 

difficulties in ways similar to those in which super-symmetry relaxes the 

gauge hierarchy problem in GUTS. Primordial inflation combined with 

supersymmetric inflation naturally leads one to look for models derived 

from N=l supergravity.*) (For a review of the general interplay between 

cosmology and supersymmetry see the contribution g, by J. Ellis in these 

proceedings.) Here, I will examine the present state of inflationary 

models in super-gravity focusing on the resolution lo-’ 2, of some general 

problemsl3) regarding initial conditions. 

To begin, I will very briefly review the conditions necessary for 

inflation. The expansion rate of the Universe iS determined by the 

Friedmann equation 
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where H is the Hubble parameter, R is the Robertson-Walker scale factor, 

P is the total mass-energy density of the Universe, Mp = 1.2xj019 GeV is 

the Planck mass, k = rl,O is the curvature constant determining whether 

the Universe is open (-11, closed (~1) or flat (0) and finally A 

represents the cosmological constant. If during a phase transition, the 

Universe supercools into a state with a large vacuum energy density 

which acts as a cosmological constant, the expansion rate will soon be 

dominated by this contribution. Recall that the energy density in 

radiation falls off as T4 as the Universe expands and cools. Thus if 

the phase transition is described by a scalar potential V($), such that 

V(0) is large, the expansion rate will be 

Hz = 8nV(0)/3M; (2) 

and 

R - exp(Ht) (3) 

where the vacuum energy density plays the roll of the cosmological 

constant. An expansion of the form of eq. (3) characterizes what we 

call inflation. 

The search for a” inflationary model becomes the search for a 

scalar potential V($) with several key properties.14) First of all, we 

must require that the timescale for the field to pick up its “&2”UIT 

expectation value be large, so that exp(Hir) > 1O28 or HT >_ 65 where T is 
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the rollover timescale. The timescale is determined by the classical 

equations of motion 

$ + 3Hd, + av& = 0 (4) 

to be 

r-1 = $4 - (a2v/a$)m (5) 

where $ = 0 initially and the effects of interactions are neglected 

until after the rollover is completed. Our first major requirement is 

that near the origin, 4 < H << v 

a2v/a$/ $wo < 3Hz/65 (6) 

Clearly, flat potentials of this type are more easily attainable when v 

is made as large as possible, i.e. in models of primordial inflation. 

A second key constraint concerns the production of density 

fluctuations during the phase transition. In general there will be a 

time spread over which in certain regions of space, $ rolls down faster 

Or slower than others. Density perturbations have been calculated41 in 

terms of this time spread 

611/p = HOT (7) 

where 6p/p is the magnitude of the perturbation as it enters the horizon 

and 6~ is calculated in terms of H and 6. Limits coming from the 

isotropy of the microwave background radiation ‘5) imply that 
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6P/P 5 10-4 (8) 

This limit generally feeds into a constraint on the coupling constants 

in V.4) Supersymmetry is helpful in keeping these couplings small enough 

to satisfy this constraint.597) 

Our goal therefore is to find a potential V of the form 

v = 6 + Yr$ + 8@3 + a$4 . . . . (9) 

where the coupling cr,B,Y,6... satisfy the inflationary constraints 

( . . . refers to the possible inclusion of non-renormalizable terms in V). 

In the context of super-gravity, the search for V translates into a 

search for a superpotential OP more generally a KBhler potential. In 

N=l super-gravity, the scalar potential is expressed in terms of the 

KBhler potential as16) 

V = eGCGicG-l)j ,j - 31 (10) 

where Gi I ac,a$i, c; - aUa$ia4J etc. and G is a real function of the 

chiral super-field $i. The scalar kinetic terms of the theory are 

expressed as 

--CT . . = -Gj (apmi)(au~Jj (11) 

So the theory iS only well defined for GJ > 0. Minimal N=l supergravity 

refers to those theories in which GJ = 6j and G is expressed as 

G = @%; + lnlF12 (12) 
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where F($) is the superpotential. (I will be using throughout, units 

such that Mp = &. 

For G of the form in eq. (121, the scalar potential is given by 

v($ise;) = exp(4i@i) [/Fi+$iF12-31F121 (13) 

where Fi _ aF/aGi. One must now apply the inflationary constraints to 

find a superpotential F. Let us write F in the following general forma) 

F(4) = n+1 .*(M&$ ) 
n 

(14) 

where m is an overall scale for F and we will assume that the ,Ii are all 

of the same order of magnitude for naturalness. We will from now on 

concentrate on a single field, the inflaton $, which is a gauge singlet. 

One constraint on F comes from the fact that we will not want to break 

supersymmetry with 4. The reason being that, if broken by $, the 

Supersymmetry breaking scale would be Ms - ,,,2/M 
P' As we will see, 

m = 10~4M 
P implying that M,-Io'~G~V >> Mw-10 2 GeV, thus destroying the 

gauge hierarchy we set out to solve initially with supersymmetry. The 

condition to preserve supersymmetry is that 

eG’2G$ = F4 + $*F = 0 (15) 

at the global minimum (we will take the global minimum to be at 

<r$> = Y = 1 for convenience). Secondly we will also want the 

cosmological constant to vanish at the minimum implying that 8, F(1) = 0 

as well. 
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The couplings a,B,Y,6 etc. can be expressed in terms of the 

co"P1i"gs 'i. For example, for V along the real o axis 

a = ‘5 A;+ ?,‘,,-,I A i l 

0 81 23 02 ?A, i^+lAoi4)mn 

E = -(2X0+ + 2X,k2 + h,Aq)m 
4 (16b) 

Y = 2hoi2 m4 (lbc) 

6 = (A; - 3,12)d’ (166) 

where h,z2,, was in order to cancel the linear term. The first 

inflationary COnStraint (eq. 6) iS satisfied if Y or A2 = 0. The 

constraint coming from density perturbations becomes 17) 

sp.. P - &p ,a, 12(d) ; 10-4 (17) 

where k is the wave number of the perturbation. This then becomes a 

constraint on the scale m, m <_ ,0-h. The simplest superpotential which 

satisfies all of this is 18) 

F = (1 - @)2m2 (18) 

As we will see however there is one additional constraint to be 

considered. 

The normal picture for a phase transition in the early Universe is 

that at very high temperatures, symmetries are restored and <$> = 0. As 
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the Universe cools the high temperature minimum may become metastable 

triggering the phase transition. Since we are dealing here with a gauge 

singlet this picture is not guaranteed. For example, if V is asymmetric 

about @=O, due to a cubic term we would expect the high temperature 

minimum to be shifted. In super-gravity, the picture becomes less 

intuitive. Finite temperature minima may be shifted from e = 0 even if 

V is symmetric. This is true however only when the superpotential F is 

asymmetric about the origin. For very high temperatures, one loop 

corrections to V in N=l supergravity arelg) 

“1 
T2 

‘26 Tr($ + + $1 

where 

TrMg = 2~: 

TrM$ = 2eGITij12 - 4eC 

(19) 

(2Oa) 

(20b) 

Tij = Gij + GfCj - Ck(C -1 )'q. p J (20c) 

The importance of the finite temperature potential, is that it 

enables the theory to predict the initial value for <@, i.e. the 

starting place for the inflationary rollover. Our final requirement20) 

is therefore that there exist a high temperature minimum at $‘O (or 

wherever the potential is suitably flat. Unfortunately, for the simple 

example of eq. (181, the finite temperature minimum is far from the 

origin so that it is rather unnatural to expect <@=O initially. If one 
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chooses <Q-O as a” initial condition (i.e. ignoring V,) the” the model 

will work. The benefit of using V, is that it is the theory which 

chooses the initial conditions rather than doing so by hand. 

It turns out however, that without choosing couplings hi which 

differ by many orders of magnitude, it is impossible’3) within the 

context of minimal N=l supergravity. This is most easily see” when one 

considers the form for v, when a large number n, of chiral 

supermultiplets are also present in the theory,lg) 

VI = g LG$G” - 21eG (21) 

In a minimal theory, the zero temperature potential V takes the form 

v = &[G& - 31 (22) 

It is easy to show that V@(O) = v,(O) = 0 is only satisfied if 

G@(O) = 0. But then V(0) < 0 making a transition to a state with V-O 

impossible. 

One can however, remedy this situation by considering non-minimal 

supergravity theories, i.e. those in which Gj f 61. One can show, for 

example that the inflationary constraints along with the thermal 

constraint can be satisfied by a more general choice of the Kahler 

potentiallz) 

G = g$(+++*) + g$($$*) + g$$ ($2+$X2) + g$~($$*)(++@*) + --* 

+ l”(F/z (23) 
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where g,$, g$ etc. are coupling constants. The inclusion of the 

superpotential is Simply for the convenience of ensuring unbroken 

supersymmetry and a vanishing cosmological constant at the global 

minimum. For example 

F = m2(1 - e5)2 (24) 

with m - 10-4 ensures that F(l)=F e(l)=0 and gives the correct scale for 

6p/p without altering the structure of the potential V near 0 5 0. 

In order to satisfy the necessary constraints, one finds a 

relationship between the couplings. 12) For example for g$=, and g$e = 0 

g$ = a > fi (25a) 

B 44 = ’ 
- a212 (25b) 

g$+$ = (ab + 2a3 - 5.3 - a2c/3)/6 (25~) 

g&,4 = b/6 (25d) 

g$$ = (1 - ac)/4 (25e) 

g$$,$ = c/l2 (25f) 

3? < 6 + a3, (258) 

ensures a flat potential and a high temperature minimum at $=O. It is 
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straightforward to check that the choice a=-2, b=4, c=-3 produces a 

satisfactory potential. When one takes into account the effects of n 

chiral supermultiplets eq. (25a)-(25g) are slightly altered by letting 

c+c-n/a except in eq. (25f). 

Another possibility for finding a model for inflation within the 

context of non-minimal supergravity theories is SU(rl,l) 

Supergravity.21.22.1’) At the tree level, these theories produce 

perfectly flat potentials.21) Minima are determined therefore by 

radiative corrections which fix the scale of supersymmetry breaking as 

we11 as the scale for weak interactions. Hence, these theories are 

called no-scale theories as only the Planck scale iS Put in by hand. 

The form for the Kahler potential in SU(n,l) supergravity (with n chiral 

supermultiplets) is 

c = -3 ln(f(z,z*) - e! i/3) + In IF12 10 (26) 

where z is the singlet responsible for supersymmetry breaking. Recall 

that in our discussion of minimal supergravity, we required that the 

inflaton preserve supersymmetry. That rule is left to a second field z 

which is not directly coupled to other matter fields and is commonly 

referred to as the hidden sector. In a minimal theory, we could have 

chosen23) 

C(z,z*) = zz* + lnlF,(s)j2 

F, = v2(z+A) 

(27a) 

(2’fb) 
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where I! - 10-a and A adjusts the cosmological constant. In eq. (26), 

the z field serves essentially the same role as in minimal theories 

although the scale P is no longer put in by hand. 

We will assume that in eq. (26), the second, third, and fourth 

derivatives of f(z,z*) vanish at the minimum z=zo and that If,l=const. 

The scalar potential then takes the very simple form2’) 

v = e2E/31F. 2 
II (28) 

where G = G-lnlF12. It is interesting to note that the potential (28) 

resembles very closely the scalar potential in global supersymmetry. 

The value of G is determined by radiative corrections. For simplicity 

we can take22) e =l. c 

Concentrating again, only on the inflaton, we can find”) a 

super-potential similar to the simple form of eq. (18) 

F = m2($ - $414) (29) 

leading to the very simple potential 

V = m411 - @312 (30) 

where again m-10-4 from the constraint coming from density 

perturbations. Although more difficult to check, one can show that the 

above model also satisfies the thermal constraint, namely V,(e,e*) has a 

minimum at <@> = 0. Thus we see that previous problems’3) associated 

with inflation and minimal supergravity are not general and can be 

alleviated in non-minimal models. 



13 

Finally, I would like to point out another class of inflationary 

models which avoid the thermal problems, they are Linde’s chaotic 

inflationary scenarios.24) In chaotic inflation, a potential as simple 

as V = A@4 can be made to inflate and produce density perturbations with 

(6p/p)-10-4. The idea is that at very early times there is a reasonable 

probability that e will be very far from the origin say $ >- ~~~ For 

h-lo-l2 (as is required by (6p/p)) V < $ even for 4-103Mp. As @ rolls 

back to e = 0, the Universe can go through an inflationary epoch. Thus 

it is irrelevant whether or not V,(e) has a minimum at e = 0. The 

drawback on this type of model is that one must assume that $ iS uniform 

on scales much larger than’the horizon (AL-103H-‘) in order to ensure 

that the kinetic terms do not dominate the Lagrangian. This is perhaps 

an unreasonable assumption, but again, once made, the model works. 

It is interesting however, that chaotic models also become25) very 

simple in SU(n,l) supergravity theories. In minimal supergravity the 

superpotential was necessarily very complicated,26) whereas in SU(n.1) 

models F = ~1’243 will produce 25) the desired scalar potential. 

Finally, what remains is a physical explanation (rather than a 

cosmological one) for the inflaton. Our general philosophy has been 

that N=l supergravity is only an effective theory which is a remnant of 

some extended theory, e.g. N=8 supergravity. We hope that perhaps a 

more natural explanation for inflation would occur there. Indeed, the 

SU(n,l) theorieszl) do represent left over symmetries for extended 

(N > 4) supergravity indicating that perhaps we are searching in the 

right direction. 
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